
An economical micro-submarine testbed for validation of 3D
cooperative control strategies for underwater robots.

P. Pruitt, G. Dinolov, A. McAuley, W. Ferenc, M. Gonzales, A. L. Bertozzi and R. Levy

Abstract— We describe a new aquatic robotic testbed de-
signed to test algorithms for coordination and control of
micro remote control submarines. The testbed is implemented
with a three-dimensional tracking algorithm utilizing views
from two planes. We demonstrate the tracking using two
dimensional open loop tests on the surface of the water and
three dimensional open loop tests underwater. We compare the
results with a mathematical model that describes the motion of
the submarines in response to propeller forces.

I. INTRODUCTION

This paper describes the design, construction and testing of
a small-scale aquatic testbed for three dimensional swarming
algorithms. The goal of the research is to explore novel math-
ematical problems inspired by mobile sensor applications for
cooperative autonomous aquatic vehicles. Applications of in-
terest include static target searching and detection (as in mine
countermeasures), detection of mobile agents (boats, marine
life, people, submarines), environmental boundary estimation
(e.g. isoclines of temperature, salinity, algal bathymetry
and coastal measurements), and environmental monitoring.
Computational and experimental approaches are developed
in tandem.

There is currently extensive research employing multiple
vehicle testbeds. Many groups are engaged in this research;
we mention a few to put our research in context. Most
testbeds are designed for cars, including large-scale systems
with costly custom robotics [4], [9], [5], [2], [14] as well as
smaller, more economical testbeds, such as Caltech’s MVWT
[4] and UCLA’s Micro-Car Testbed [12]. The smaller
testbeds illustrate how scaled testing can be an economical
solution for implementing mathematical swarming models
on groups of robots. However, these testbeds do not explore
swarming in three dimensions. To extend the research into
three dimensions, large-scale aquatic systems exist, such
as those run by the Matthew Joordens research group at
the University of Texas [10], and researchers at Harbin
Engineering University in China [15]. Research is also being
conducted in the field, sometimes with autonomous vehicles
large enough to carry people or payloads [17], [11], [6], [3].

This paper is supported by ARO MURI grant 50363-MA-MUR and NSF
grants DMS-0914856, DMS-0907931, DMS-0601395, and EFRI-1024765.

W. Ferenc, A. McAuley and P. Pruitt are with the Department of
Engineering, Harvey Mudd College, Claremont, CA 91711, U.S.A. E-mail:
{wferenc,amcauley, ppruitt}@hmc.edu.

G. Dinolov and R. Levy are with the Department of Mathemat-
ics, Harvey Mudd College, Claremont, CA 91711, U.S.A. E-mail:
{gdinolov,rlevy}@hmc.edu.

A.L. Bertozzi is with the Department of Mathematics, Uni-
versity of California, Los Angeles, CA 90059, U.S.A. E-mail:
{bertozzi}@math.ucla.edu.

Fig. 1: The aquatic testbed tank and submarine.

Fig. 2: Micro remote control submarine used in the testbed.
Top view on left shows vertical propeller below cage. Bottom
view on right shows rear propellers and taping.

Our goal is to design and develop a small-scale aquatic
testbed using an aquarium, small remote control submarines
(available off-the-shelf and then modified by our lab), and
three small cameras. The problem of real-time control and
tracking in a 3D aquatic testbed is significantly more difficult
than the 2D land-based problems. For example, in 3D there
is rotation about three axes as opposed to one. This increases
the complexity of the videotracking hardware and software
as well as the mathematical model describing the motion.

In Section II we present the hardware choices used in
the lab. In Section III we describe our custom tracking
algorithm. In Section IV we describe a mathematical model
for the motion of the submarines in response to forces from
the propellers, and in Section V we present examples of
preliminary open loop tests.

II. TESTBED SETUP AND HARDWARE

A. System Overview

The testbed, constructed for under $2500, consists of a
with 2.081m long x .608m high x .581m deep aquarium
and five major hardware components coordinated through
the control loop shown in Figure 4. The hardware compo-
nents include micro submarines, cameras, an arduino micro-

Fig. 3: Hardware linking computer to controller through
the Arduino. Controller from original black case at top is
removed. Below the case are two controllers connected to
Arduino (top right) and breadboard (bottom right) used for
testing.

controller, transmitter, and computer. The laboratory space
required for the testbed has a small footprint (3.187m x
5.156m), therefore the platform design could be implemented
at smaller undergraduate institutions as well as universities
with more extensive laboratory facilities.

B. Submarines

The remote control submarines are modified Sub-Sonic
XP microsubs (see Figure 2, [7]). The submarines are 26mm
wide, 80mm long, and are rated to submerge to three meters.
They offer three-dimensional control using two propellers
placed at the stern for for horizontal motion (left, right,
forward and backward), and one propeller in the center
oriented for vertical motion. The submarines receive signals
at 27 MHz on one of three channels. Generally each channel
corresponds to one submarine, but it is possible to issue the
same command to multiple submarines. The bottom of the
submarines are marked with colored electrical tape so that the
bow is yellow and the stern is red. This facilitates tracking
of the orientation of the submarines. The submarines with
tape have mass 51.10g and are positively buoyant. These
submarines are used for the 2D surface tests. With 3.160g
of additional weight, the submarines are negatively buoyant
and have a mass of 54.26g. These submarines are used for
the 3D underwater tests.

C. Cameras

The testbed employs three Logitech Webcam Pro 9000
cameras. The cameras were chosen for low cost, a high frame
rate (30 fps), compatibility with the Linux operating system,
and high resolution [13]. Two cameras placed below the tank
record its entire length in the x-y plane. This is necessary
because the distance from the floor of the lab to the bottom
of the tank is not large enough to use only one camera. One
camera placed to the side of the tank records the entire x-z
plane. Combining the views from the two planes provides
3-D position and orientation information.

Serial USB Arduino

Tracking
Algorithm

Control
Algorithm

Computer

Radio Transmitter

Wired

SUB

XY CAMERAS
(view from bottom)

XZ CAMERA
(view from

side)

USB
RADIO

Visual

Visual

Tank

Fig. 4: The control loop for the testbed.

III. TRACKING

Several tracking methods for submarine position have been
used for swarming testbeds, such as onboard gyroscopes [4]
and barcode-reading [12]. Since our micro submarines are
too small to implement a gyroscope payload, we developed
a custom tracking algorithm.

Tracking of the submarines is automated via computer.
Motion commands are sent to the submarine from a computer
through a serial connection to an Arduino micro-controller
and then to the transmitter (a modified version of the original
hand-held controller). The submarine’s position is recorded
by the cameras which transmit video back to the computer.
The computer, running Ubuntu, then executes a custom
tracking algorithm using OpenCV 2.0 [16] and C++ to locate
the position and orientation of each of the submarines.

The tracking method relies on known initial locations. In
such a system, Sub A in frame 1 is said to be the same
submarine as Sub B in frame 2 if the difference between
the location of Sub A and Sub B is small. The drawback of
this method is that the algorithm might fail when multiple
submarines are very close to one another. The advantage is
that the submarines do not have to be individually marked for
identification. Identification markings, such as barcodes, are
feasible for 2D testbeds with video through air, but are not
ideal in a 3D aquatic setting where distortion can arise from
the water itself and from the orientation of the submarine.

After the tracking algorithm receives video input from

Video XZ

Frame XZ

Grayscale

BG Subtract

Gauss. Blur

Threshold

Erode/Dilate

New Blob

Match Up Blobs

Old Blobs

Orientation
XZ

Form (X,Y, Z)
Point

Video XY 1

Frame XY

Grayscale

BG Subtract

Gauss. Blur

Threshold

Erode/Dilate

New Blob

Match Up Blobs

Old Blobs

Orientation
XY

Video XY 2

Frame XY 1 Frame XY 2

I
M
A
G
E

P
R
O
C
E
S
S
I
N
G

Blob TrackingBlob Tracking

Outputs

XZ Plane XY Plane

I
M
A
G
E

P
R
O
C
E
S
S
I
N
G

Fig. 5: A flowchart of the tracking algorithm used to detect
the submarines.

the cameras it outputs 3D position and orientation data for
the submarines. A flowchart representation of the tracking
algorithm is shown in Figure 5. Note that most of the
processing is performed on the x-y and x-z planes separately.
In the x-z plane only one camera is needed to view the entire
tank, whereas the x-y plane has two camera feeds that must
be merged together. Frames from both x-y are combined with
a transformation that corrects for keystoning that results from
the camera angles. Information from the x-y and x-z planes
combine to provide three dimensional information.

A. Initializing Tracking Points

A tracking point consists of a location in 3D and a sub-
marine identification number. The points must be initialized
so that the starting positions of the submarines are known.
Tracking points are initialized in two different ways. The
first initialization occurs during the first iteration of the
tracking loop, when any blobs returned by a blob-finding
algorithm from both the x-y and x-z planes are designated
as tracking points. The second method of initializing tracking
points allows the user to add points after the first iteration.
Each iteration corresponds to one frame from the camera (30
fps). The user clicks on a location in either the x-y or x-z
plane display where a submarine is apparent and the point
is designated as an additional tracking point. The program
identifies the corresponding object in the other plane by

taking the x-coordinate of the clicked-on point and searching
all nearby x-coordinates in the other plane for suitable blobs.

B. Image Processing

The first step of the tracking algorithm is to extract a
baseline background image of the tank from each plane of
the video feed. The frames are converted to grayscale in
order to facilitate quicker processing. Then after the tracking
points are initialized, frames with and without submarines
are background subtracted to isolate the submarines. The
background subtraction can result in some noise due to
slight lighting variations and ripples in the water, so the
algorithm incorporates Gaussian blurring, thresholding and
erode/dilate to reduce the noise. Remaining noise consisting
of small groups of pixels in contrast to the larger solid blocks
representing the submarine locations can be eliminated by
manually deselecting the noise-induced tracking points.

C. Matching Blobs to Tracking Points

Within the tracking algorithm, when a new frame is taken
by the camera, it is necessary to update the submarine
identification number. An OpenCV blob-finding algorithm
can isolate the submarines based on their larger size and
return the location of the blob. The algorithm compares the
new blob locations to the locations of blobs in the previous
frame.

Determining which blobs correspond to the new locations
of the tracking points is more complicated than simply
assigning the closest blob to be the updated location of a
submarine. This naive approach results in some blobs being
missed and others being assigned multiple identification
numbers. An improved algorithm is outlined in the steps
below and illustrated in Figure 6:

a) For each blob (red circles) in the new frame, identify
the closest tracking point location from the previous frame
(blue crosses).

b) If the distance between the new blob and old tracking
point is greater than a prescribed radius, it is disregarded
since the submarine could not have moved that far between
frames.

c) Update the tracking points with the position of the
nearest remaining candidate blob (green stars) within the
prescribed radius. If two tracking points claim the same blob
(highly unlikely), then a random tracking point is assigned
for that frame. Random tracking points are corrected with
information from a subsequent frame.

Using two camera views, each submarine only provides
one record of its (y, z) location, taken from the (x, y)
and (x, z) tracking points. However, both planes provide
information about the x location. The (x, y) and (x, z)
measurements must be combined into a single value in order
to form a 3D location estimate (x, y, z). A single x value is
assigned from a weighted average of the two x estimates. An
x value is given more weight if there are no other tracking
points near it. The rationale for this weighting scheme is
that if there are other tracking points nearby, the likelihood
of the blob tracker accidentally returning the wrong point

(a)

(b) (c)

Fig. 6: The three blob tracking steps. (a) Each blob (red
circle) identifies the closest tracking point location from the
previous frame (blue crosses). (b) If the distance between
the blob and tracking point is greater than a prescribed
radius, it is disregarded since it could not have moved that
far between frames. (c) The tracking points update with the
position of the nearest remaining candidate blob within the
prescribed radius (green star). If there is no viable update
in the current iteration, the tracking point will update in a
subsequent iteration.

is increased. If there are no other points nearby, the point
returned by the blob tracker can be assumed to be more
reliable.

D. Orientation Detection

Once the three dimensional location of each submarine
is known, the next step in the tracking algorithm is to
determine the orientation of each submarine. The bottom
of each robot is marked with yellow on the bow and red
on the stern. Using the tracking points, a color frame is
extracted for a small region containing the submarine. A
custom thresholding operation isolates the red and the yellow
portions of the submarine in each small frame. Using the
position of the nose and the tail, an angle representing the
orientation of the submarine is returned. This angle can be
used in a control algorithm to determine which propellers
must be activated to achieve a desired motion. An image
highlighting the isolated tail is contained in Figure 7.

IV. MATHEMATICAL MODEL

In this section we present a mathematical model and
computer simulations for comparison with results from the
aquatic testbed. The model is based on the equations of mo-
tion resulting from all of the forces acting on the submarine.
It is closely related to a 2D model of motion by Hsieh, et

Fig. 7: An image from the videotracking program of the
submarine viewed from below with the tail of the submarine
identified in the upper right portion of the image.

al. [8]. We assume that the linear and rotational drag are
proportional to the linear and angular velocity, respectively.
We neglect lift resulting from the shape of the vehicle and
external hydrodynamic forces. The model is composed of
two differential equations:

m
d~v

dt
= ~FL + ~FR + ~FV + ~β −D~v (1)

I
d~ω

dt
= ~rL × ~FL + ~rR × ~FR + ~rV × ~FV −R~ω (2)

where m is the mass of the vehicle, t is time, ~v and ~ω are
the linear and angular velocities of the vehicle. ~FL, ~FR, and
~FV are the forces from the left, right, and vertical engines
of the vehicle. Similarly, ~rL, ~rR, and ~rV are the vectors
from the center of mass of the vehicle to the respective
engines. Since the linear drag D~v and rotational drag R~ω
are modeled as proportional to ~v and ~ω, both D and R are
diagonal matrices. ~β is the buoyant force and tensor I is the
inertial tensor of the vehicle. Equations (1) and (2) are both
expressed in the Lagrangian reference frame of the vehicle.
As we are interested in laboratory measurements, equations
in our model must be transformed to the Eulerian reference
frame, using the standard time derivative conversion operator.(

d

dt

)
lab

=

(
d

dt

)
vehicle

+ ~ω× (3)

V. OPEN LOOP TESTS

Open loop tests provide data for the submarines’ response
to propeller pulses. 2D tests were conducted on the surface of
the water, and 3D tests were conducted under the surface. In
the tests we refer to the propellers as left and right according
to the submarine top view. To conduct each test, we waited
for at least 15 seconds for disturbances in the water from
previous tests to dissipate. With the tracking program, we
obtained the background image. Next a submarine was
slowly placed in the starting position at one end of the
tank. As soon as the person placing the submarine was out
of view of the cameras, the tracking was initiated, and the
submarine was given a 0.33 sec pulse. Ten seconds of data
were recorded, and then the tracking was stopped, prompting
the creation of the output data file.

To conduct the 2D surface tests, a positively buoyant
submarine was placed on the surface of the water. Two
typical forward tests from simultaneous pulses to the two

Fig. 8: 2D open loop test with positively buoyant subma-
rine. Videotracking captures a single pulse from both rear
propellers. The time between points is 0.03 seconds. The
black dashed line represents the trajectory of the submarine
with dots at the data points. The blue solid line indicates the
trajectory of the mathematical simulation. The drifting of the
submarine to the right or left of the model path indicates that
frequent pulses should be used to provide the tightest control
of the submarine trajectory. Units are in pixels.

rear propellers are shown in Figure 8. For comparison, we
show the result of the model predicting forward motion in a
straight line. Note that the submarine drifts to the right or left
after some time, indicating that in a control loop, commands
will need to be issued at frequent intervals to achieve tight
control of the submarine motion.

To conduct the 3D tests, a negatively buoyant submarine
was placed below the surface, but near the top. As the
submarine descended, a pulse to the left rear propeller
created a clockwise spiral (observed from above). A typical
result is contained in Figure 9 with a comparison to the
results of the mathematical model in Equations (1) and (2),
solved using a Forward Euler numerical scheme. The initial
conditions for the model are provided by estimates of the
initial position and velocities from the data.

The parameters used for the simulations in Figures 8 and
9 are described below. The initial position of the sub is
shifted to the origin, which is provided as initial data to the
simulation along with initial velocities from the experimental
data: linear velocity ~v = [0, 106,−70] and angular velocity
~w = [0, 0,−60]. We input the mass of the submarine
m = 54.26g. For the 3D simulations the initial Euler angles
used in conversion to the Lagrangian frame (based on the
experimental data) are the yaw angle φ = 0.1525, pitch angle
θ = 0 and roll angle ψ = 0.

For the preliminary simulations presented in this paper,
we use the vectors ~rL = [−1,−1, 0] and ~rR = [1,−1, 0]
to indicate that the left and right propellers are separated
from the center of mass. The vertical propeller is assumed
to be at the center of mass, such that ~rV = [0, 0, 0]. For
the 3D simulation we pulse only the left propeller, which

Fig. 9: 3D open loop test with negatively buoyant submarine.
Videotracking captures a single pulse from the left rear
propeller. The time between points is 0.03 seconds. The
black dashed line represents the trajectory of the submarine
with dots at the data points. The blue solid line indicates the
trajectory of the mathematical simulation.

causes a right turn: ~FL = [0, 5700, 0], ~FR = [0, 0, 0]. For the
2D simulation, the two propellers have the same force. In
both simulations, the vertical propeller is turned off: ~FV =
[0, 0, 0]. The pulse length is 0.33s. The computational time
step is 0.001. The buoyancy is not used in the 2D test, and
is taken to be ~β = [0, 0, 0]. In the 3D test it is taken to be
strong and negative: ~β = [0, 0,−2200].

The inertial matrix I is related to how the mass is
distributed in the vehicle. For the 3D simulation, the results
are most sensitive to the lower right component in the matrix
because it corresponds to rotation in the x-y plane. For these
simulations we use

I =

 0.7 0 0
0 0.1 0
0 0 0.7

.

The matrices D and R correspond to linear and angular
drag and are assumed to be diagonal for the reasons discussed
above. They are used as fitting parameters and will be refined
in future work. For the simulations of this paper we use the
following values:

D =

 −1900 0 0
0 −1900 0
0 0 −55

,

R =

 0 0 0
0 0 0
0 0 −200

.

Future work will involve refining the parameters to provide
better comparison between experimental results and sim-
ulations. We will also introducing control to the tracking

sequence for closed loop tests. We plan to implement a 3D
version of a model using attractive and repulsive potentials
to simulate 2D swarming [1]. Preliminary tests indicate that
this approach is promising.

VI. CONCLUSION

We have demonstrated the viability of an economical
aquatic testbed using open source software and commercially
available small submarines. Open loop tests indicate that to
provide desirable control it may be necessary to navigate
using combinations of relatively short pulses. Reasonable
comparison in 3D between the experimental and mathemat-
ical results demonstrates the feasibility of such a model
for control of the submarine. Refinement of parameters in
the model will be the next focus for the modeling aspect
of the project. In the future, the aquatic testbed will be
used to implement mathematical swarming algorithms for
coordination and control of multiple submarines.

VII. ACKNOWLEDGEMENTS

We would also like to thank Prof. Z. Dodds of the
Computer Science Department at Harvey Mudd College and
the DYNAR research group for helpful discussions. This
research was supported by ONR grant N000141010641, NSF
DMS 0601395, NSF DMS 0907937, NSF EFRI 1024765.

REFERENCES

[1] N. Bao, Y.-L. Chuang, D. Tung, C. Hsieh, Z. Jin, L. Shi, D. Marthaler,
A. Bertozzi, and R. Murray, “Virtual attractive-repulsive potentials for
cooperative control of second order dynamic vehicles on the Caltech
MVWT,” in American Control Conference, 2005, pp. 1084–89.

[2] “The Minnow Project,” http://www.cs.cmu.edu/˜coral/minnow/,
Carnegie Mellon University. [Online]. Available: http://www.cs.
cmu.edu/∼coral/minnow/

[3] “Robotic platforms of Michael Benjamin,”
http://oceanai.mit.edu/mikerb/robots/home.html, Center for Ocean
Engineering. [Online]. Available: http://oceanai.mit.edu/mikerb/
robots/home.html

[4] T. Chung, L. Cremean, W. Dunbar, Z. Jin, E. Klavins, D. Moore,
A. Tiwari, D. van Gogh, , and S. Waydo, “A platform for cooperative
and coordinated control of multiple vehicles: The caltech multi-vehicle
wireless testbed,” Proc. of the 3rd Conference on Cooperative Control
and Optimization, Dec 2002.

[5] R. D’Andrea, “Robot soccer: A platform for systems engineering,”
Computers in Education Journal, vol. 10, no. 1, p. 5761, 2000.

[6] “Fumin zhang,” http://www.isr.umd.edu/news/news story.php?id=2259,
Georgia Tech. [Online]. Available: http://www.isr.umd.edu/news/
news story.php?id=2259

[7] “Silverlit Sub-Sonic XP 3D control RTR
RC submarine,” http://www.hobbytron.com/SilverlitSub-
SonicXP3DControlRCSubmarine.html, Hobbytron.
[Online]. Available: http://www.hobbytron.com/
SilverlitSub-SonicXP3DControlRCSubmarine.html

[8] C. Hsieh, Y.-L. Chuang, Y. Huang, K. Leung, A. Bertozzi, and E. Fraz-
zoli, “An economical micro-car testbed for validation of cooperative
control strategies,” in American Control Conference, 2006, pp. 1446–
51.

[9] Z. Jin, S. Waydo, E. B. Wildanger, M. Lammers, H. Scholze, P. Foley,
D. Held, and R. M. Murray, “MVWT-II: The second generation
Caltech multi-vehicle wireless testbed,” in Proc. of the 2004 American
Control Conference, 2004.

[10] M. A. Joordens and Matthew, “Design of a low cost underwater robotic
research platform,” in SOSE 2008 : IEEE International Conference on
System of Systems Engineering, 2008, pp. 1–6.

[11] N. Leonard, D. Paley, R. Davis, D. Fratantoni, F. Lekien, and F. Zhang,
“Coordinated Control of an Underwater Glider Fleet in an Adaptive
Ocean Sampling Field Experiment in Monterey Bay.”

[12] K. K. Leung, C. H. Hsieh, Y. R. Huang, A. Joshi, V. Voroninski,
and A. L. Bertozzi, “A second generation micro-vehicle testbed for
cooperative control and sensing strategies,” in Proceedings of the 2007
American Control Conference, 2007.

[13] “Webcam pro 9000,” http://www.logitech.com/en-gb/webcam-
communications/webcams/devices/5867, Logitech. [Online].
Available: http://www.logitech.com/en-gb/webcam-communications/
webcams/devices/5867

[14] T. W. Mclain and R. W. Beard, “Unmanned air vehicle testbed for
cooperative control experiments,” in Proc. of the 2004 American
Control Conference, 2003, pp. pp. 5327–5331.

[15] Z. Ming-jun, Y. Li-ping, W. Yu-jia, D. Qing-zhu, and L. Xiao-
bai, “Development and experiment of an underwater vehicle test-
bed controlled by rudders and thrusters,” in In Proceedings of the
2009 International Conference on Robotics and Biomimetics, 2009,
pp. 1633–1638.

[16] “Welcome - OpenCV wiki,” http://opencv.willowgarage.com/wiki/,
Open Computer Vision. [Online]. Available: http://opencv.
willowgarage.com/wiki/

[17] L. Whitcomb, “Underwater robotics: Out of the research laboratory
and into the field,” in IEEE International Conference on Robotics and
Automation, vol. 1. Citeseer, 2000, pp. 709–716.

